LOCAL HISTORIC DISTRICT:	Dilworth
PROPERTY ADDRESS:	424 East Tremont Avenue
SUMMARY OF REQUEST:	Addition
APPLICANT:	Thomas Fenstermacher

Details of Proposed Request

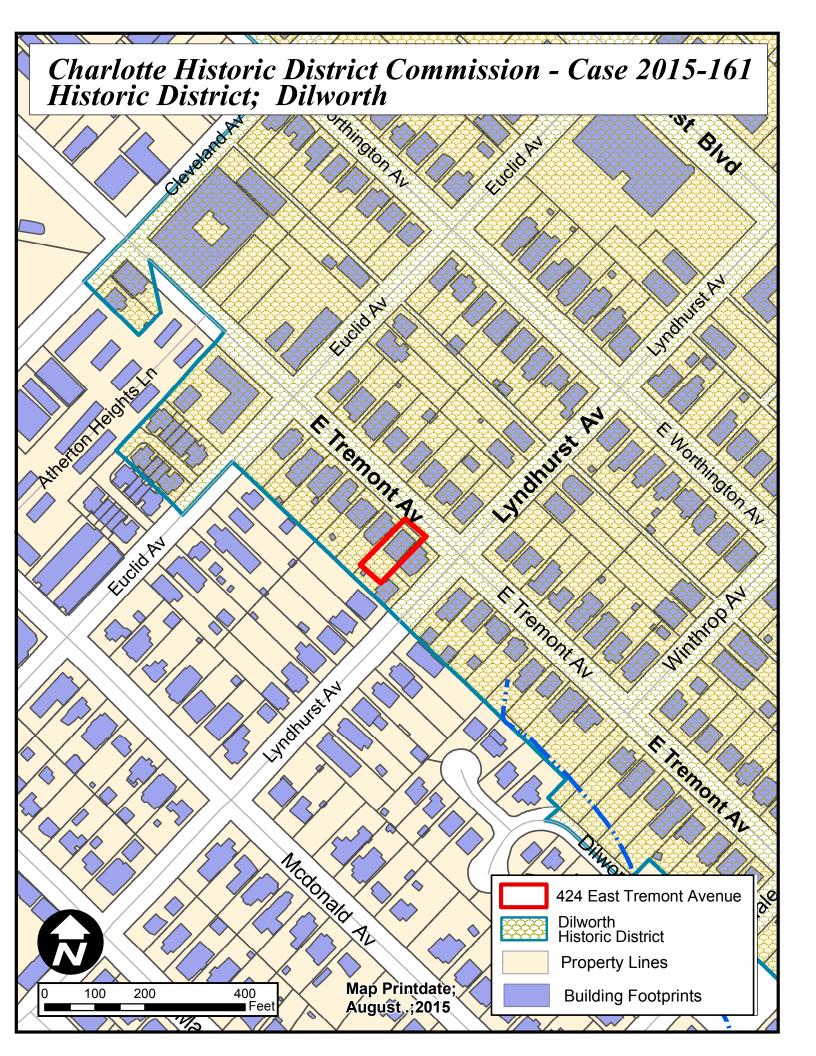
Existing Conditions

The existing structure is a one story Bungalow house with a gable and hip front porch roof, and gable roof over the main structure. The house was constructed in 1920 and listed as a contributing structure in the Dilworth National Register of Historic Places (1987).

Proposal

The proposal is a second story addition within the existing building footprint. Front porch, window and door patterns on the first floor will remain. Total height from the finished floor elevation (FFE) to ridge is +/-22'-3". Materials include wood shake siding, wood windows and trim details to match existing. There will be no changes to the site.

Policy & Design Guidelines - Additions

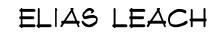

Additions to existing structures in Local Historic Districts have a responsibility to complement the original structure. Additions should reflect the design, scale and architectural style of the original structure. The following guidelines are intended to encourage addition designs that are compatible with the existing structure, while not fully mimicking the original design.

1. All additions will be reviewed for compatibility by the following criteria:		
a. Size	the relationship of the project to its site	
b. Scale the relationship of the building to those around it		
c. Massing the relationship of the building's various parts to each other		
d. Fenestration the placement, style and materials of windows and doors		
e. Rhythm the relationship of fenestration, recesses and projections		
f. Setback in relation to setback of immediate surroundings		
g. Materials	g. Materials proper historic materials or approved substitutes	
h. Context	the overall relationship of the project to its surroundings	

- 2. Additions must respect the original character of the property, but must be distinguishable from the original construction.
- 3. All additions to the front or side of existing properties must be of a design that is sensitive to the character and massing of the existing structure.
- 4. Additions to the front or side of existing structures that are substantially visible from a street must go before the full Commission.

Staff Analysis

The HDC will determine if the project meets the guidelines for Size, Scale, Massing, Fenestration, Rhythm, Materials and Context.



THE FENSTERMACHER RESIDENCE

424 E. TREMONT AVE. CHARLOTTE, NC 28203

COVER SHEET	1
GENERAL NOTES PAGE	2
EXISTING FLOOR PLAN	3
EXISTING ELEVATIONS	4
DEMOLITION PLAN	5
NEW FOUNDATION PLAN	6
NEW FIRST FLOOR FRAMING PLAN	٦
NEW FIRST FLOOR PLAN	8
NEW SECOND FLOOR FRAMING PLAN	9
NEW SECOND FLOOR PLAN	
	10
NEW SECOND FLOOR PLAN	10 11
NEW SECOND FLOOR PLAN	10 11 12
NEW SECOND FLOOR PLAN NEW SECOND FLOOR CEILING PLAN NEW ROOF FRAMING PLAN	10 11 12 13
NEW SECOND FLOOR PLAN NEW SECOND FLOOR CEILING PLAN NEW ROOF FRAMING PLAN NEW FRONT & REAR ELEVATIONS	10 11 12 13 14
NEW SECOND FLOOR PLAN NEW SECOND FLOOR CEILING PLAN NEW ROOF FRAMING PLAN NEW FRONT & REAR ELEVATIONS NEW LEFT & RIGHT ELEVATIONS	10 11 12 13 14 15
NEW SECOND FLOOR PLAN NEW SECOND FLOOR CEILING PLAN NEW ROOF FRAMING PLAN NEW FRONT & REAR ELEVATIONS NEW LEFT & RIGHT ELEVATIONS SECTION SHEET	10 11 12 13 14 15 16

DRAWN BY:

DESIGN LOADS 1.1 Design loads are all dead loads plus: A. Sleeping areas... ..30 PSF B. All other floors40 PSF C. Balconies... ...60 PSF D. Decks. F. Attic floor live loading with the following: .30 PSF i. Areas accessible by permanent stairs. íí. Wíth Storage. ..20 PSF iii. Without Storage. ..10 PSF G. Roof live load20 PSF ..90 MPH 3-second gust H. Wind load (Exposure C)

1.2 All designs are in accordance with the 2012 Residencial Building Code.

2. FOOTINGS AND FOUNDATIONS:

I. Snow load.

2.1 Soil bearing capacity assumed as 2000 PSF unless noted otherwise or as determined by standard penetrometer test.

- 2.2 All continuous wall footings for one or two story houses are 12" thick x 24" wide. Reinforcing in footings should be (3) #5 bars if not noted on the plans. Reinforcement not required by Code, unless footings are on disturbed soil or compacted fill.
- 2.3 All interior piers are 8" x 16" CMU up to a maximum height of 32". All piers over 32" high must be filled with Type "5" mortar. Maximum height for a 8" x 16" filled pier is 6'-4". 8" x 16" piers between 32" and and 6'-4" tall must be vertically reinforced with #4 bars in each cell and horizontally reinforced with NO.9 Durowall in every course. Piers larger than 8" x 16" are noted on the plans or as required by height. Pier cap blocks should be 8" of solid masonry.
- 2.5 Concrete shall have a compressive strength of 3000 PSI in 28 days unless noted othewise. No concrete shall be poured in temperatures below 40° Farenheit unless heat to be provided during curing for two days. The bottom of all footings must be 12" below grade.
- 2.6 All rebar splices shall be a minimum of 2'-O" unless otherwise noted.
 2.7 Any special foundations for structures shall be designed by a Licensed Professional Engineer upon receiving soil capacity
- specifications for all soul considered to affect the structure. 2.8 Chimney footing sizes are shown on the structural design drawings. Masonry and Isokern style chimney footings must be a minimum of 12" thick with 12" projection on all sides.
- 2.9 Foundation walls back-filled with soil and supporting structurcal framing shall be constructed as shown on detail sheet, as necessary.
 2.10 Special retaining wall designs to be shown on detail sheet.

3. FRAMING CONSTRUCTION - OTHER THAN ROOF:

3.1 Crawlspace girders and band as noted on plans. Maximum clear span to be 4'-8" (6'-0" o.c. spacing of piers) unless noted otherwise. To avoid most cracking in finished hardwood floors over any girde, use the following procedure:

A. Nailing Patterns

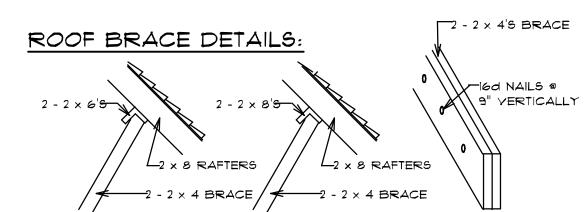
...20 PSF

- All floor joist must be toe-nailed to their support girders with a minimum of 3-8d nails at each end from each side. Larger nails with split and render the toe-nail ineffective. No end-nailing through the girder or
- band is permitted except for temporary construction purposes.
- ii. If dropped girders are used, end-lap all joists 12" minimum and side-nail each with a minimum of 3-16d nails at each end of each joist. Ledger strips should be nailed with 3-16d nails at each joist end, with nails 3" apart.
- iii. Nail multiple-member built-up girders with three rows of 16d nails staggered at 32" o.c., 2" down from the top, 2" up from the bottom, and at mid-depth. Use 3-16d nails at each end of each piece in the joints through the members making up the multiple-girder. This nailing pattern will insure a tight floor from outside of house to outside so that when the framing shrinks during the first heating season, the shrinkage will be uniformly distributed over the entire floor. If the girder nailing pattern is omitted, then the shrinkage will accumulate over the girders and an objectionable crack will develop in the finished hardwood floor over the girder line.
- B. At all girders where the joists change direction, install bridging at 6" o.c. for a minimum of six joist spacings beyond any joist direction change. This will insure shrinkage distribution over the floor and not let it accumulate at the girder.
- C. There must be wood blocking through-bolted to the steel beam with joist toe-nailed and attached to the beam with metal hangers under any hardwood floors that pass over a steel beam supporting floor joists.
- 3.2 All crawlspace framing lumber must be Southern Yellow Pine #2.
 3.3 Steel beams must have 5-2x4 jack studs under each end support unless noted otherwise on the structural plans. All studs must be nailed together with two (2)
- veritcal rows of 16d nails at 8" o.c., unless noted otherwise. 3.4 LVL beams must have 3-2x4 jack studs under each end support unless noted otherwise on the structural plans. All studs must be nailed together with two (2) vertical rows of 16d nails at 8" o.c., unless noted otherwise.
- 3.5 Masonry Lintels:
- A. For spans up 6 feet: Use 3 $1/2" \times 3 1/2" \times 1/4"$ steel angles. B. For spans from 6 to 10 feet: Use 6" \times 4" \times 5/16" steel angles.
- C. For spans from 9 to 18 feet: Use a pair of 9 gauge wires in each of the first of the first 3 courses of brick on a 6" x 4" x 5/16" steel angle. Lap all 9 gauge wire splices 12" minimum and extend wires 12" minimum into jambs. Temporarily support steel angle before laying masonry. Shoring may be removed five days following the installation of masonry.
- D. When structural steel beams with bottom plates are used to support masonry, the bottom plate must extend the full length of the steel beam. This provides support to the ends of the plate by bearing on the adjacent masonry jambs. The beam should be temporarily shored prior to laying the masonry. The shoring may be removed five days after laying the masonry.
- 3.6 All masonry or stone veneer over lower roofs must have a structural steel angle lag bolted to the adjacent wall studs to prevent sliding of the veneer. A minimum of a double rafter must be installed below masonry climbs. Thin-set veneer attachments provided by the contractor may supercede this specification. Please
- verify the alternative attachment procedure with the Engineer of Record. 3.7 All rafter braces must have 2 studs from the wall top plate through all floors solid to the foundation or supporting beam below. No braces shall be attached to the
- top wall plate without studs directly under them. 3.8 Where non-bearing parallel partitions fall between flooro joists, 2x4 ladders @ 16" o.c. must be places perpendicular to the joists to support the plywood decking
- or double joist installed directly below wall, unless noted otherwise. 3.9 All wood I-joists must be braced in accordance with the manufacturer's directions plus any details shown on the plans. Load bearing partitions, jacks, beams and column supports must be solidly blocked through the floor as the joists and plywood may not be able to carry the concentrated point loads. All point loads must be carried to the foundations with blocking and/or beams. (NOTE: All beams and double joists, etc., have been shown for a load bearing purpose. PLacement of the load carrying members shown in the plans in locations other than under the structural element they are intended to carry is the responsibility of the contractor. Exact beam locations
- are not to be scaled from the framing plans.) 3.10 Stud walls to be listed below unless otherwise noted on the structural plans: A. Interior One and Two story walls (with intermediate floors)
- B. Interior Three story walls
- í. Load bearing (2nd and 3rd floor)......2x4 @ 16" o.c. íi. Load bearing (1st floor).....2x4 @ 12" o.c.
- or 2×6 @ 16" o.c.
- ííí. Non-load bearing.....2x4 @ 16" o.c. C. Basement Walls
- i. Load bearing......2x4 @ 12" o.c. or 2x6 @ 16" o.c.
- ií. Non-load bearing.....2x4 @ 16" o.c. D. Exterior Walls
- Exterior walls for all stories shall be $2x6 \approx 16^{\circ}$ o.c. with $15/32^{\circ} \times 4^{\circ} \times 8^{\circ}$
- Structural I plywood over entire exterior.
- 3.11 Headers shall be as noted on the plans.3.12 When ceiling joists are parallel to an exterior wall and rafters bear on the exterior stud wall's top plate, tie the rafters near the top plate to the ceiling joists with 6' long 2x6
- runners at 4' o.c. across the top of the ceiling joists. 3.13 At all bay windows, each panel shall be nailed to each adjacent panel with 5-16d nails tied together with metal strapping nailed at four locations between floors with a minimum of 2-16d nails in each panel at each strap. This will help prevent vertical cracking in
- the panel joints due to horizontal oscillation of the panels. 3.14 At all stairs, every stud at each stringer must be nailed to each stringer with a minimum of 2-16d nails. This will help prevent cracking between the wallboard and the top of
- the base molding due to vertical oscillation of the stair stringers. 3.15 Steel pipe columns must be in contact with the supported member and continue solid
- to the supporting masonry or concrete foundation. No intermediate wood blocking should be used as it will crush.

4. FOUNDATION WALLS:

- 4.1 All full height foundation walls are shown on structural details sheet, as necessary.
- 4.2 All masonry or concrete basement wall construction must be inspected by the County Building Official, Architect, or Engineer for compliance with structural specifications.
- 4.3 Where full height foundationor basement walls run parallel to floor framing, blocking must be provided between joists at 3'-0" o.c. for not less than six joist spacings out from wall, as necessary.
- 4.4 Details of any earth retaining structures not attached to the house structure will be shown on separate details. (These walls may be designed only after grade conditions are known.)

5. ROOF CONSTRUCTION:


- 5.1 Rafters shall be 2x6 SYP @ 16" o.c. for standard weight shingles except as noted. They are to be cut into hips, ridges, etc., unless noted as overbuilt.
 5.2 Collar ties shall be 2x6 @ 48" o.c. at all ridges unless noted otherwise and located a minimum
- 3' below the ridge. Collar ties may be closer to ridge if alternate bracing provided. Vaulted ceilings require special collar tie details or structural ridge beam. See plans as required.
- 5.3 A minimum of three collar ties shall be used at all ridges, even if two ties must be put on one set of rafters.
- 5.4 All hips and ridges are a size larger than the rafters framing into them unless noted otherwise. 5.5 All hogs on ceiling joists or rafters are 8' long (2) 2x8 hog troughs unless noted otherwise.
- Rafters may be spliced over hogs. 5.6 Gable end framing must be braced parallel to ridges with a minimum of 2x6 diagonal braces at 6' o.c. along the gable wall to the interior ceiling joists. Braces are to bear on (2) 2x6 hogs and to gable wall at approximately mid-height of gable wall. Braces shall be at approximately a 45° angle. Other bracing may be used if it meets the Engineer's approval.

5. ROOF CONSTRUCTION:

5.1 Carry braces to partitions or beams below. Never brace rafter hogs to (2) 2X8 hogs on ceiling joists, unless shown on plans.
5.8 Ceiling joists when erected parallel to rafters must be sistered to rafters and nailed with 3-16d nails at each rafter. If a knee wall is used and ceiling joists cannot touch rafters, then rafters must be braced to the ceiling joists with 2x4 diagonal rafter ties spaced at 48" o.c. Reverse collar ties may be used behind knee walls.

5.9 Roof plan legend: A, X or ()

- A. \bigotimes or \bigcirc Indicates location of roof brace at rafter level. B. \bigcirc Arrow away from brace point indicates direction of roof brace to partition,
- beam or other brace point below. Arrow into brace point indicates a vertical or almost vertical roof brace to
- C. Arrow into brace point indicates a vertical or almost vertical roof brace to partition, beam or other brace point below.
 D. All roof braces are (2) 2x4 "T" nailed with 16d nails at 9" o.c. vertically from top to bottom. All braces longer than 10' must be braced horizontally in two directions at mid-height or be
- increased to (2) 2x6s E. Maximum spacing of roof braces is to be as follows:

2 - 2 × 4 BRACE

6. CONCRETE GENERAL NOTES:

- 6.1 Except where otherwise noted, for all concrete, the proportions of cement, aggregate, and water to attain required plasticity and compressive strength shall be in accordance with ACI 318 and ASTM C94 requirements. Pumping of concrete will be permitted only with the Engineer of Records approval of proposed concrete mix and method of pumping. Concrete shall be rapidly handled from the mixer to forms and deposited as nearly as possible to its final position to avoid segregation due to rehandling. Concrete to be spaded and worked by hand and vibrated to assure close contact with all surfaces of forms and reinforcing steel and leveled off at proper grade to receive finish. All concrete shall be placed upon clean, damp surfaces. Vibration shall be applied directly to the concrete and shall be sufficient to cause flow of settlement but not long enough to cause segregation of the mix.
- 6.2 Construction joints shall be located in accordance with ACI 301. All reinforcing steel shall be continuous across joints. In slabs on grade, sawn contraction joints shall not be over 20' center to center each way. Joints shall be sawn a depth depth of (1/3) one-third of the slab thickness. Sawing of the joints shall commence as soon as the concrete has hardened sufficiently to permit sawing without excessive raveling. Fill the saw cuts with approved joint filler after the concrete has cured.
- 6.3 Concrete, when deposited, shall have a temperature not below 50 degree Fahrenheit and not above 90 degrees Fahrenheit. The methods and recommended practices as described in ACI 306 shall be followed for cold weather concreting and ACI 305 for hot weather concreting.
- 6.4 Freshly placed concrete shall be protected from premature drying by one of the following methods:
- A) Ponding or continuous sprinkling.
- B) Absorptive mat or fabric kept continuously wet.C) Waterproof paper conforming to ASTM CITI.
- D) Application of an approved chemical curing compound.

The curing shall continue until the cumulative number of days when the ambient temperature above 50 degrees F has totaled seven. During curing, the concrete shall be protected from any mechanical injury, load stresses, shock, vibration, or damage to finished surfaces.

- 6.5 Reinforcing steel bars shall be deformed in accordance with ASTM A305 and or A408 and formed of ASTM A615-78 Grade 60 steel. Welded wire fabric reinforcing to be ASTM A185 steel wire. Accessories shall conform to the CRSI "Manual of Standard Practice." The following minimum concrete cover shall be provided over reinforcing bars:
- A) Exposed to Earth.
- D) Beams and columns.....

1. MASONRY GENERAL NOTES:

7.1 Masonry walls are to be of the sizes and in the locations shown on the plans and shall be constructed in accordance with the provisions of ACI 530.

.1 1/2

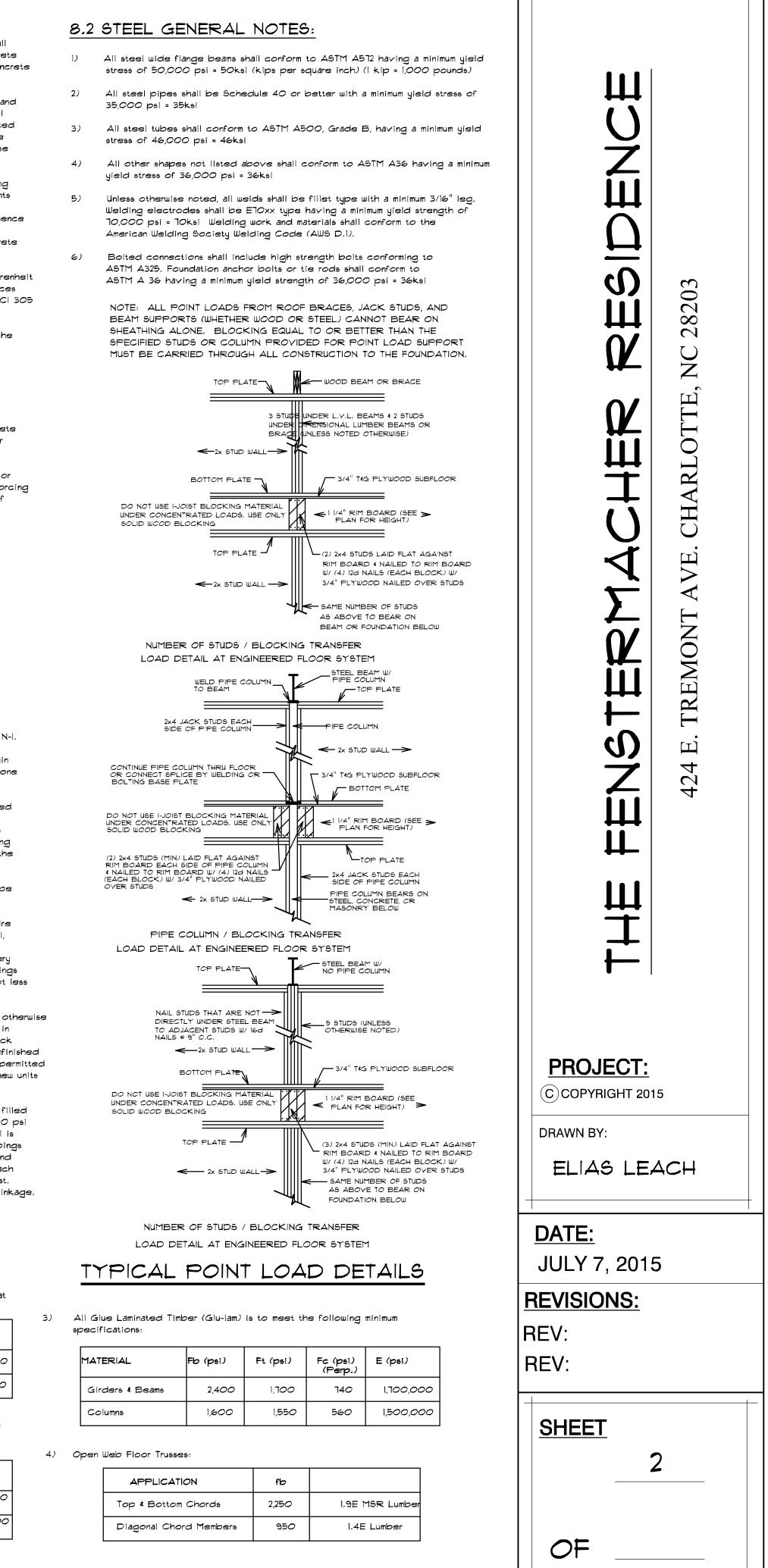
- 7.2 Hollow Load Bearing Units: ASTM C90 made with lightweight or normal weight aggregates. Grade N-1 units shall be provided for exterior and foundation walls. Grade N-1 or S-1 units shall be provided for other load bearing walls or partitions.
- 7.3 Concrete Building Brick: ASTM C55 made with lightweight or normal weight aggregates, Grade N-I or S-I except that brick exposed to weather shall be N-I.
- 7.4 Mortar: ASTM C270-95, Type 5 prepackaged mortar mix which shall not contain any non-cementitious fillers combined with not more than three parts sand per one part mix.
- 1.5 Reinforcing Steel: ASTM A615 Grade 60 steel deformed bars where indicated on plans. Where reinforcing bars are installed in the cells of CMU's, they shall secured with wire ties at intervals not exceeding 24" o.c. to maintain the bars location in the cell. The tolerance for spacing of vertical bars is (+/-) 2" along the length of the wall. The tolerance for the distance between the face of the CMU and the center of the bar shall not exceed (+/-) 1/2".
- 1.6 Mortar protrusion shall be less than 1/2". A protrusion of 1/2" or greater must be removed before grouting.
- 1.1 Horizontal Joint Reinforcement: ASTM A82 fabricated from cold drawn steel wire and hot dip zinc coated (ASTM AI53). It shall consist of two or more parallel, longitudinal wires 0.1815" diameter with welded-connected cross wires 0.1483 diameter at a minimum of 16" o.c. Joint reinforcement is to be installed in every other course and in the first two courses at the bottom and top of wall openings and shall extend not less than 24" past the opening. Splices shall overlap not less than 12".
- 1.8 Execution: Masonry units shall be laid in a running bond pattern unless noted otherwise The walls shall be carried up level and plumb within the tolerances specified in ACI 530.1-88, Section 2.3.3.2. If nonstandard dimensions are encountered, block shall be cut with a masonry saw to fit, not by stretching or shrinking joints. Unfinished work shall be stepped back for joining with new work. Toothing will not be permitted except where specifically approved. Damaged units are to be cut out and new units set in place.
- 1.9 The filled cells and bond beam blocks of reinforced masonry walls are to be filled with ASTM C476-91, Grout for Masonry with minimum compressive stress of 2,000 psi and slump range of 8" to 11". The outside face of bottom block of each cell is to be broken out for inspection of reinforcing and clean out of mortar droppings in cell. The grout is to be pumped into the cells in maximum five foot lifts and immediately vibrated to minimize any voiding of the grout. Reconsolidate each lift by vibrating several inches into the preceding lift before plasticity is lost. Reconsolidate the top lift and fill with grout any space left by settlement shrinkage.

8. MATERIALS SPECIFICATIONS:

8.1 LUMBER GENERAL NOTES:

 All common framing lumber is to meet the following minimum specifications at 19% moisture content:

٢	MATERIAL	Fb (psi)	Ft (psi)	Fc (psi) (Perp.)	E (psi)
•	*2 Spruce Pine Fir	875	450	425	1,400,000
	Southern Yellow Pine	1,150	600	480	1,600,000


2) All Structural Composite Lumber (LVL, LSL, PSL) is to meet the following minimum specifications:

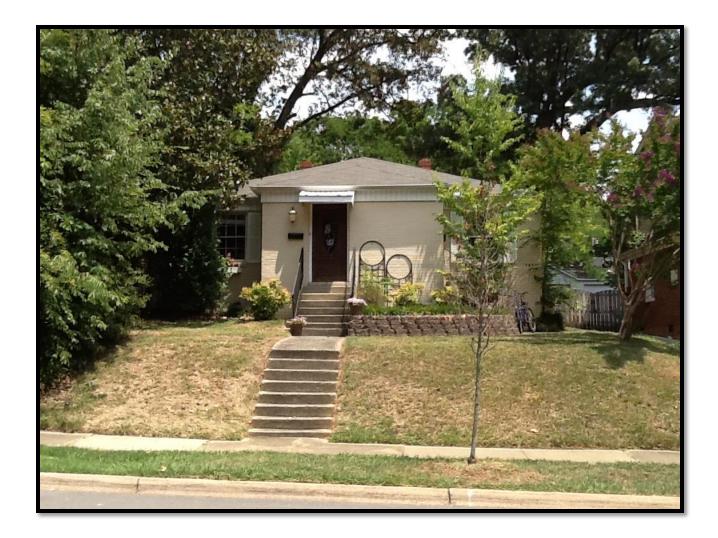
MATERIAL	Fb (psi)	Ft (psi)	Fc (psi) (Perp.)	E (psi)
Gírders & Beams (LVL,PSL)	2,600	2,310	650	1,900,000
Columns (LSL) \$ Rimboards	1,700	1,400	400	1,300,000

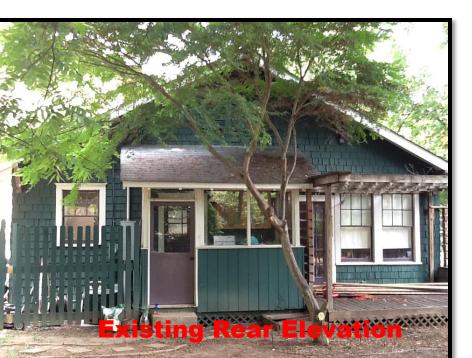
WALL BRACING NOTE

In lieu of the wall bracing requirements of Section R602.10, all stories shall be sheathed with wood structural sheathing panels. Panels shall be fastened at 6" on center along the edges and 12" on center at intermediate framing. Unless noted otherwise on the drawings, no blocking, straps, or special holddowns are required if sheathed as described above. Garage door portals/lugs shall be anchored with a minimum of two anchor bolts per lug per the foundation anchorage requirements. IF required by engineering evaluation, additional portal framing requirements will be shown on the drawings.

GENERAL CONSTRUCTION NOTES

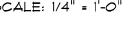
STREET VIEW EAST

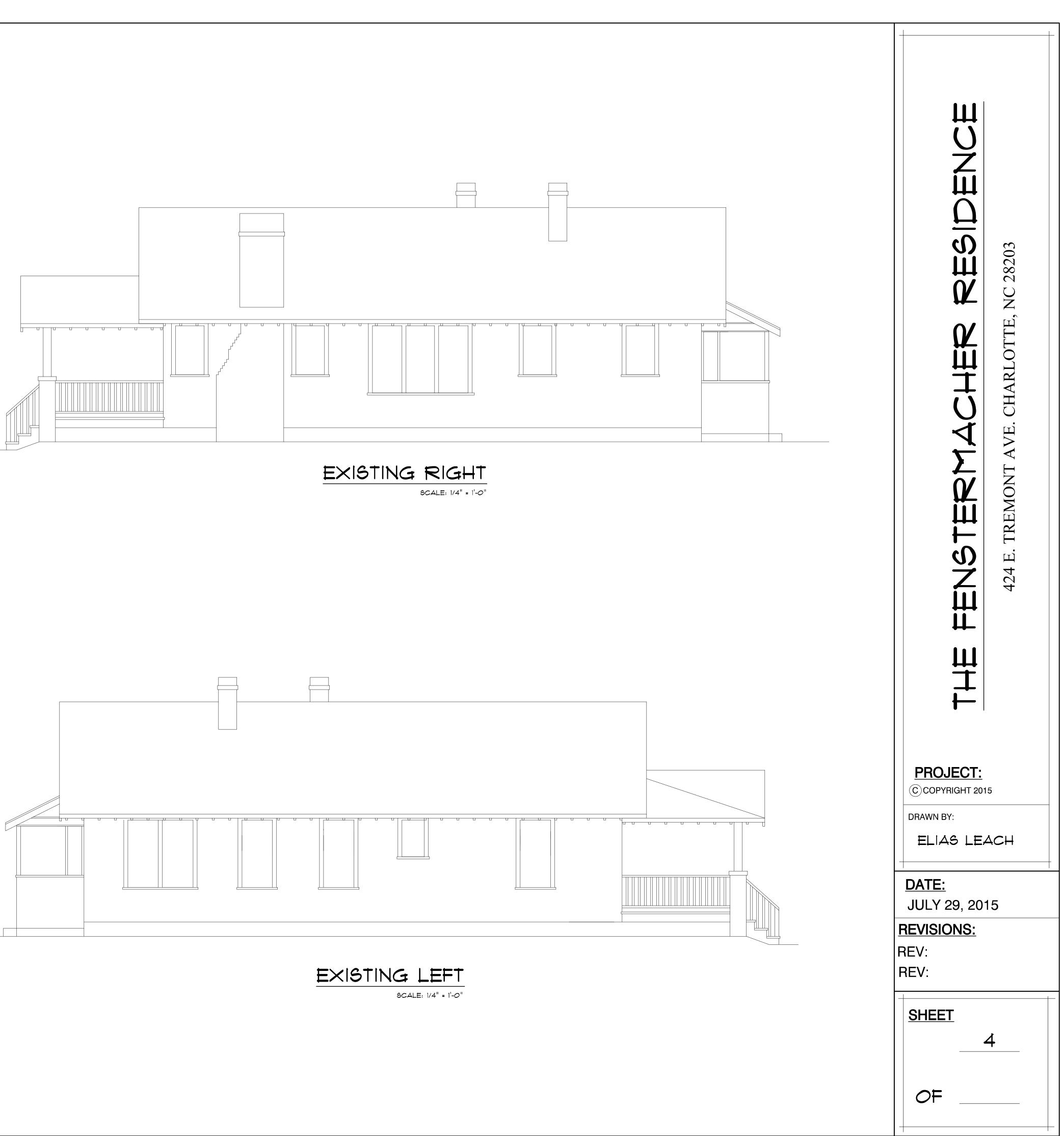


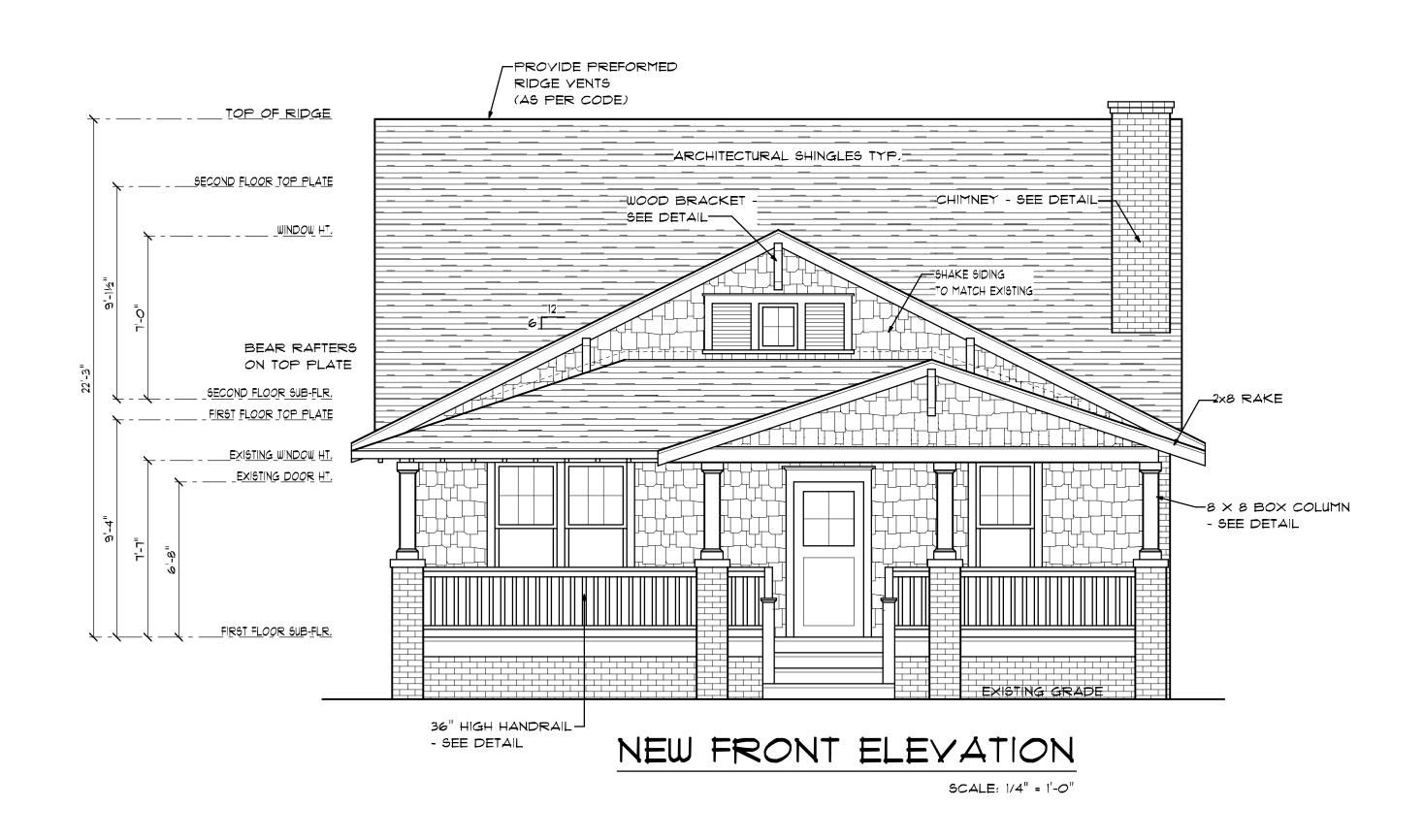


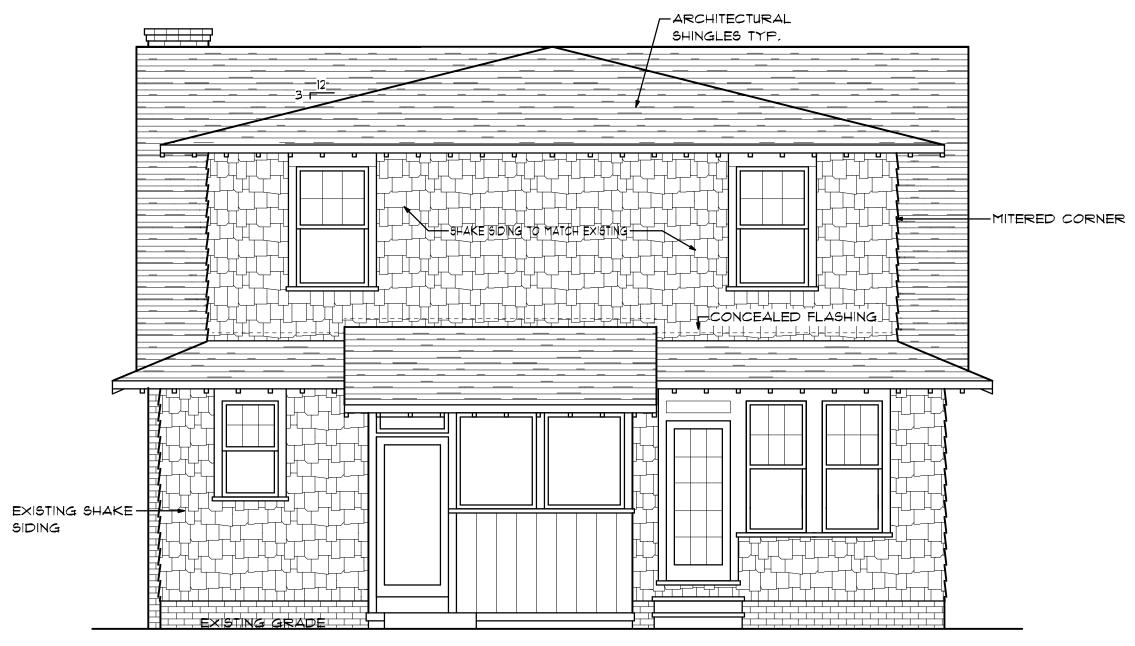
ACROSS LEFT NEIGHBOR

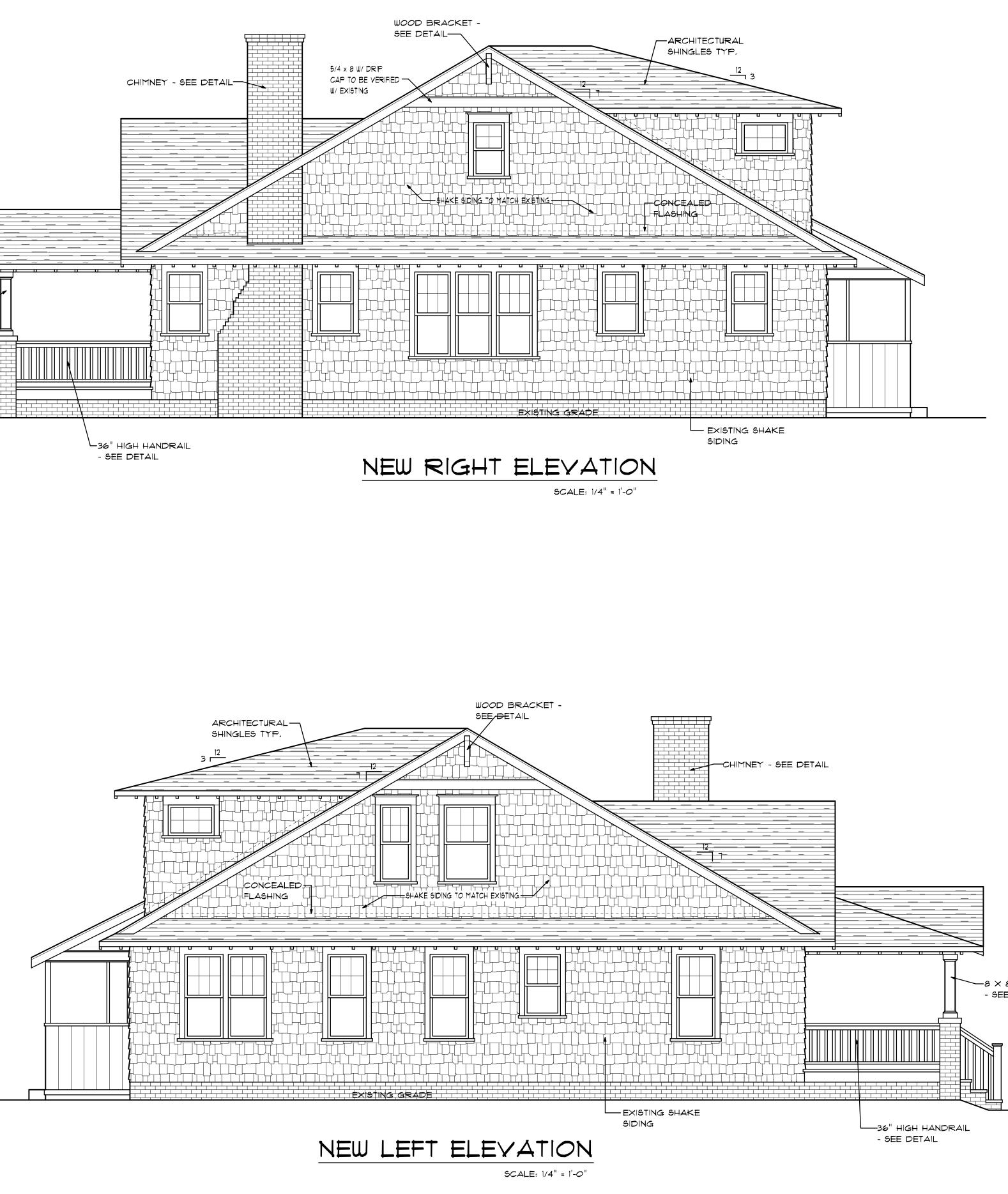
EXISTING ELEVATIONS





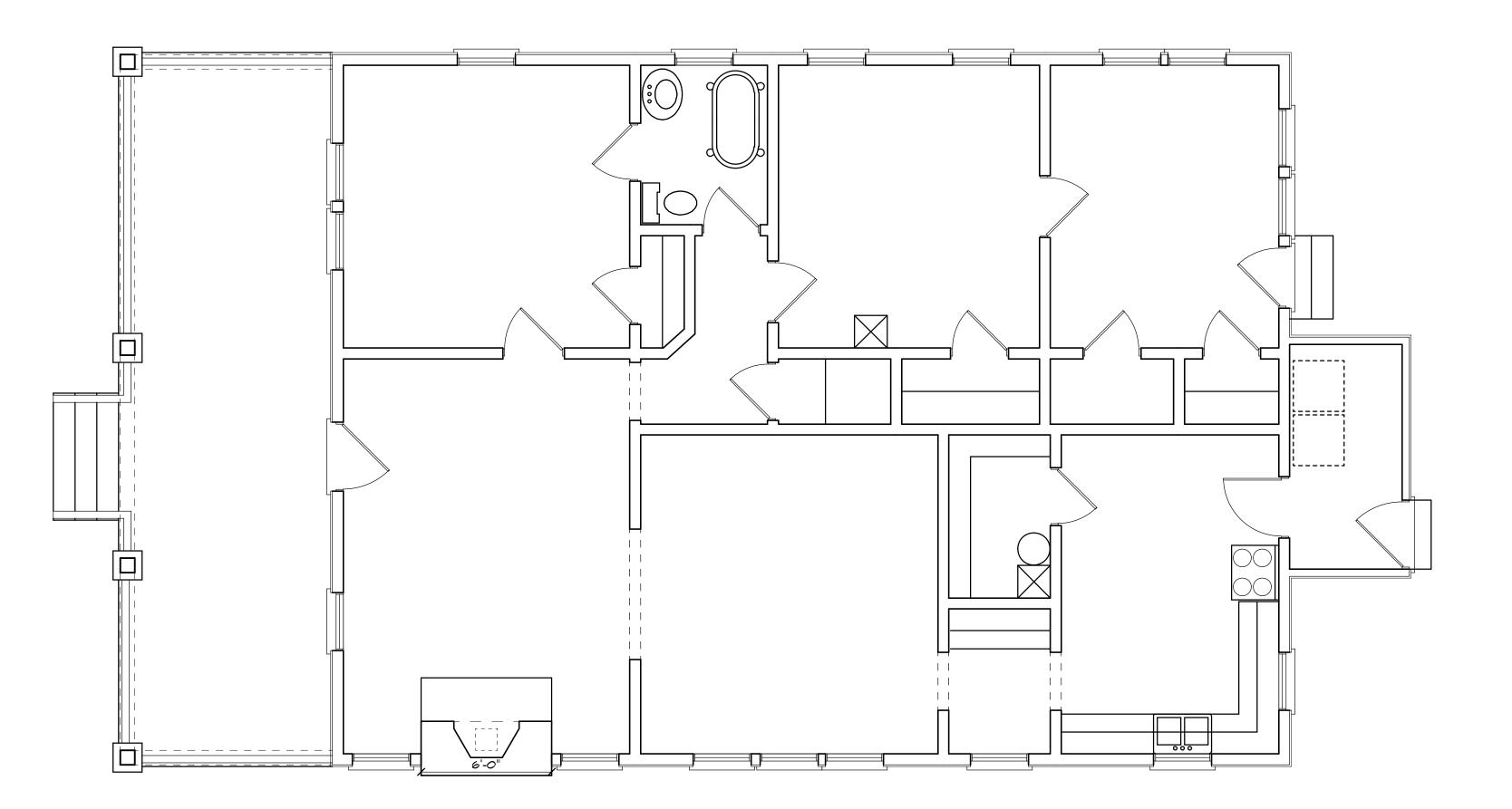


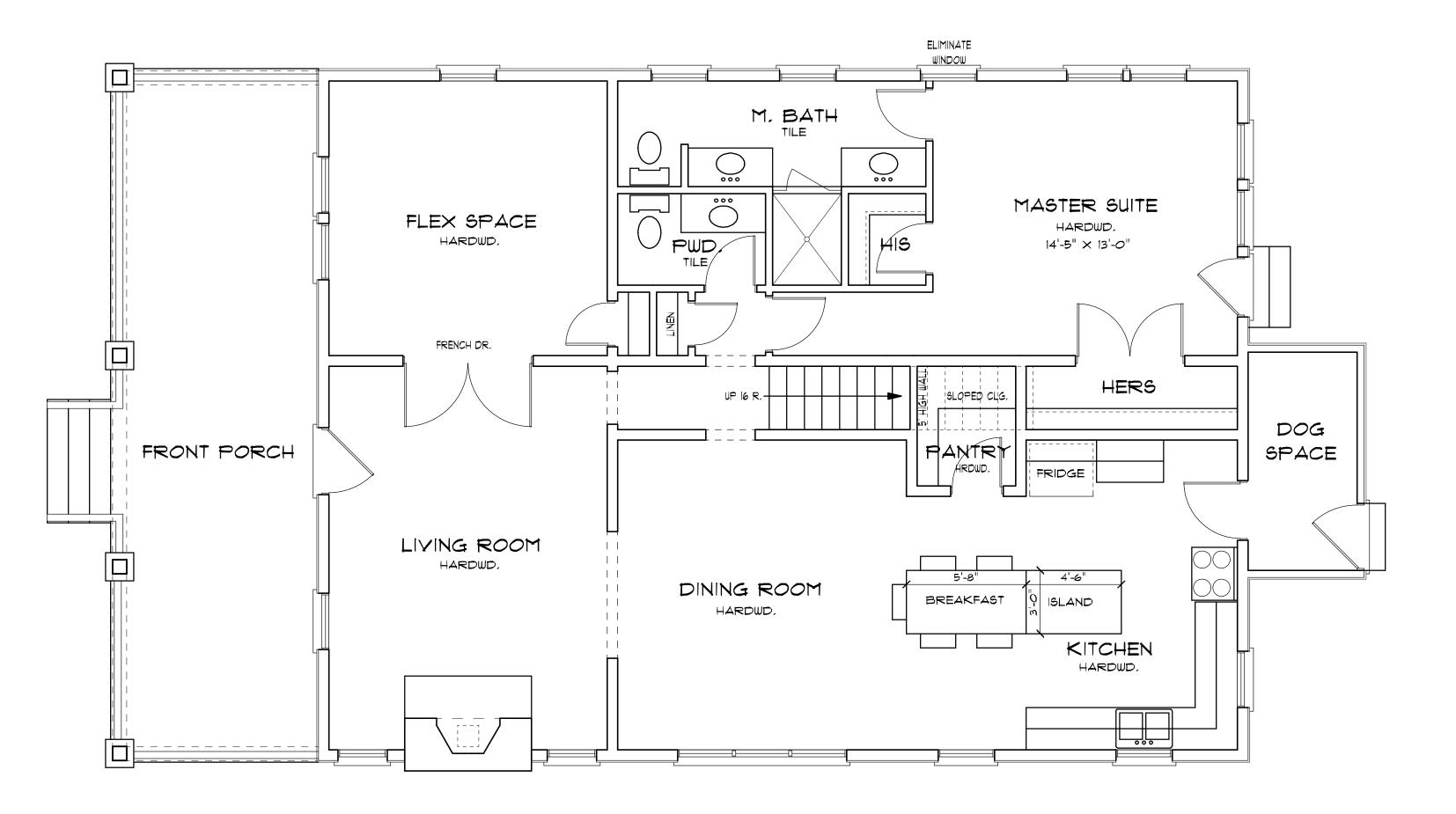




NEW REAR ELEVATION

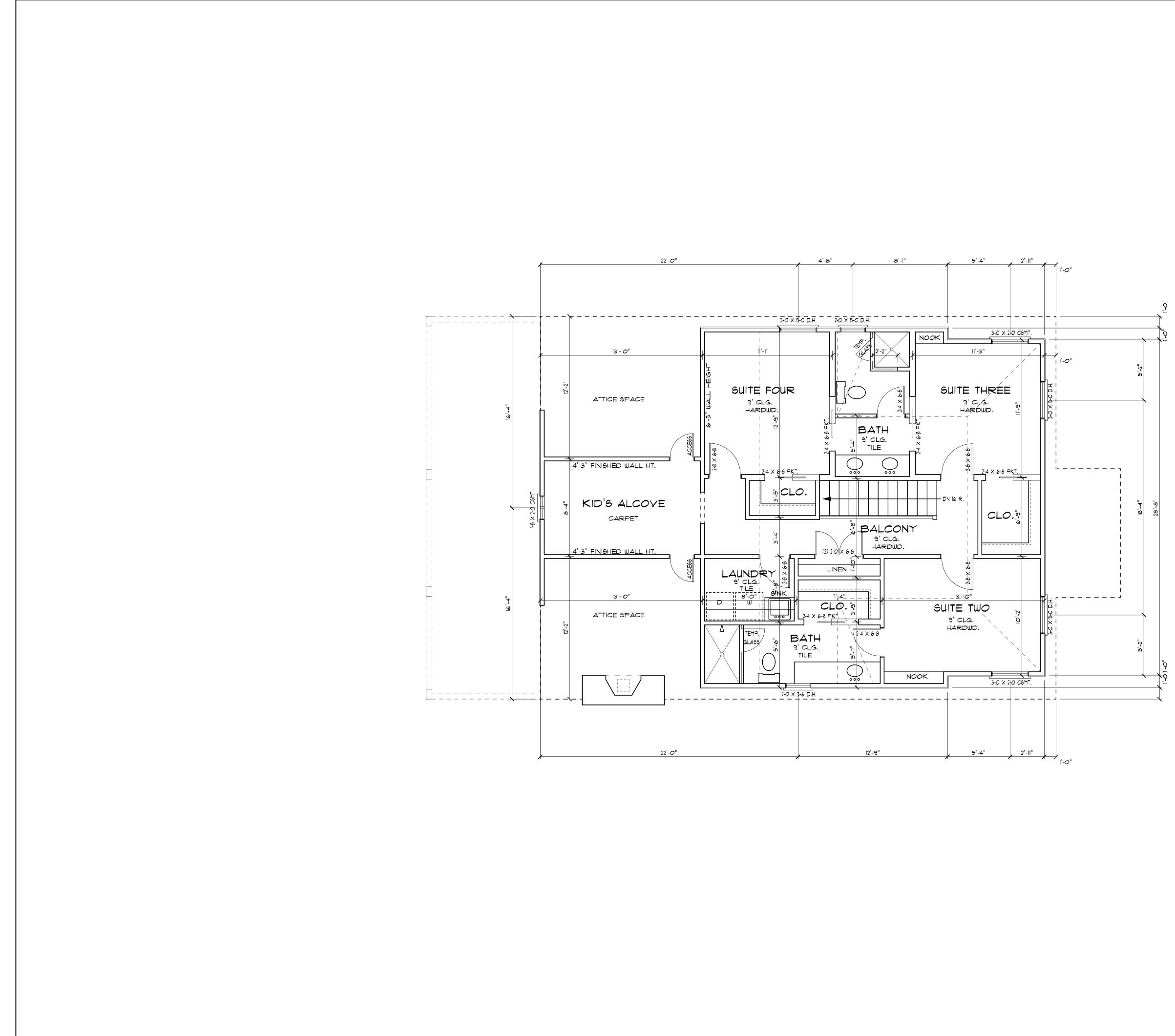
SCALE: 1/4" = 1'-0"

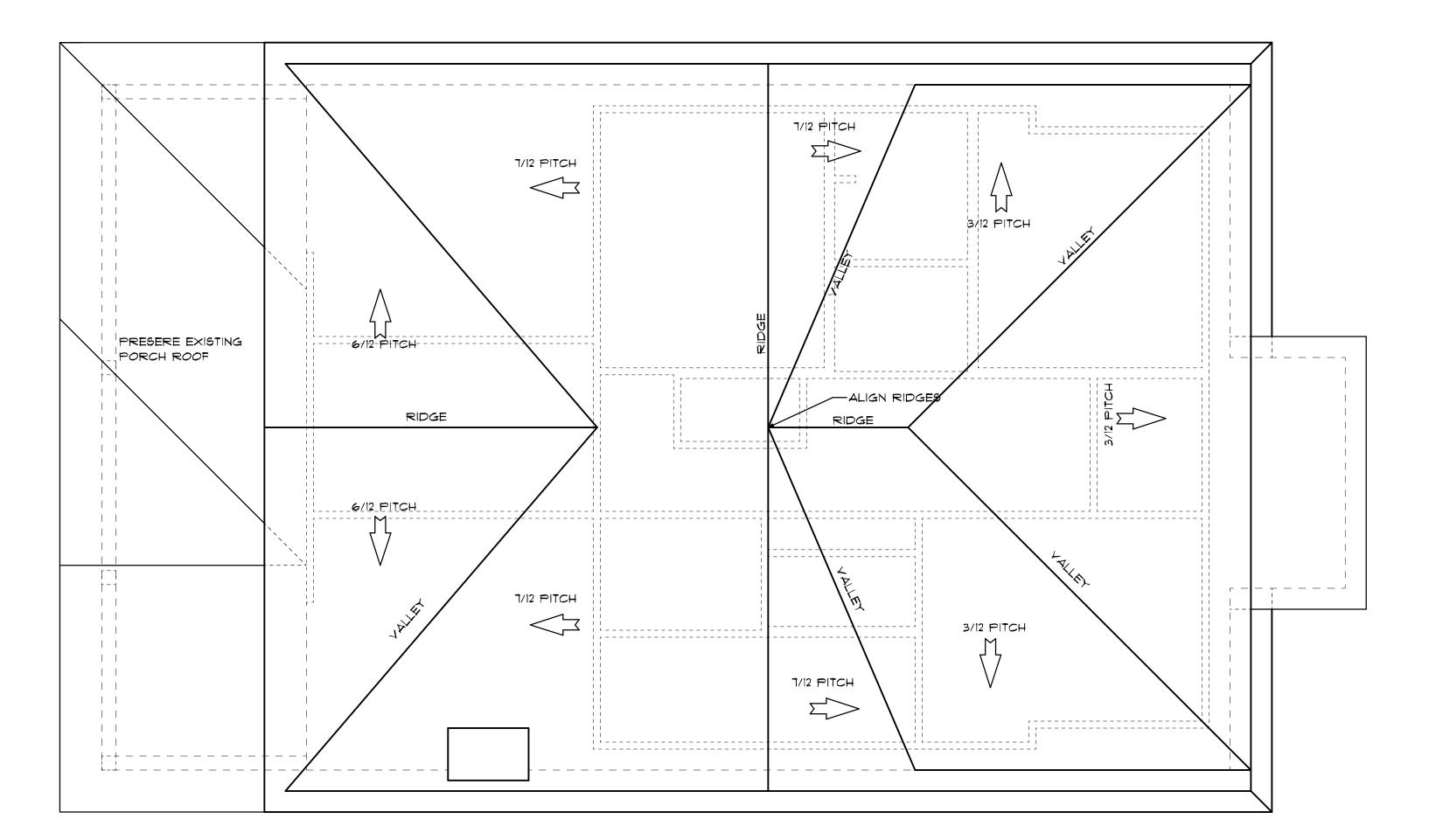

	THE FENSTERMACHER RESIDENCE	424 E. TREMONT AVE. CHARLOTTE, NC 28203	
	PROJECT: © COPYRIGHT 201 DRAWN BY: ELIAS LEA		
F	DATE: JULY 29, 2015 REVISIONS: REV: REV:		
	1		



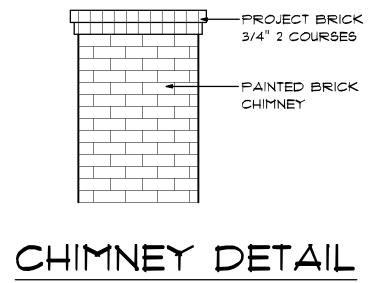
	THE FENSTERMACHER RESIDENCE 424 B. TREMONT AVE. CHARLOTTE, NC 28203	
	PROJECT: © COPYRIGHT 2015 DRAWN BY: ELIAS LEACH	
ł	DATE: JULY 29, 2015 REVISIONS: REV: REV:	
	SHEET 12 OF	

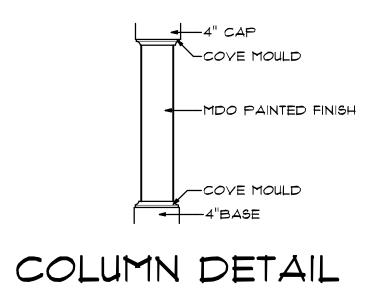
-8 X 8 BOX COLUMN

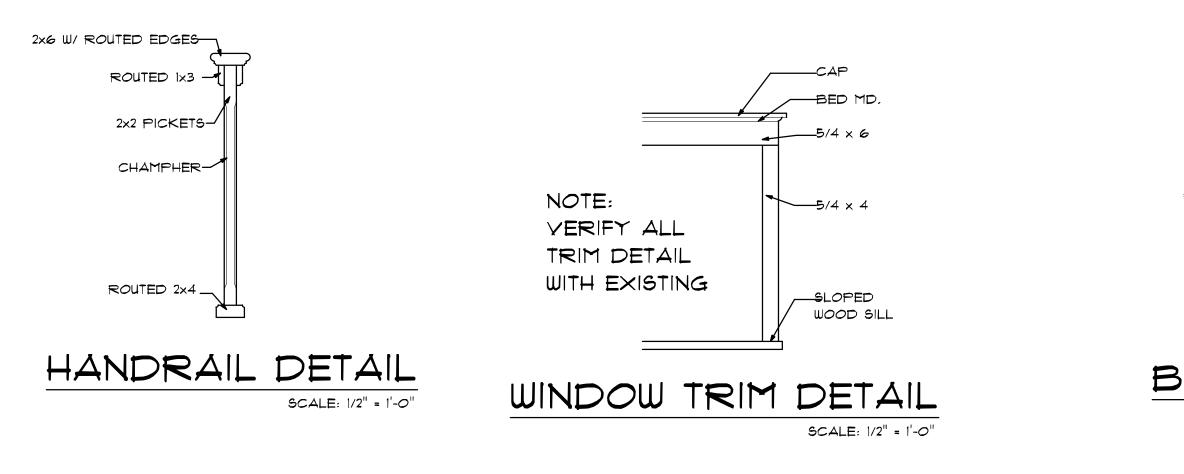

	THE FENSTERMACHER RESIDENCE 424 E. TREMONT AVE. CHARLOTTE, NC 28203
	PROJECT: © COPYRIGHT 2015 DRAWN BY: ELIAS LEACH
	DATE: JULY 29, 2015 REVISIONS: REV: REV:
EXISTING FLOOR PLAN SCALE: 1/4" = 1'-0"	SHEET 3 OF


	THE FENSTERMACHER RESIDENCE 424 E. TREMONT AVE. CHARLOTTE, NC 28203	
	PROJECT: © COPYRIGHT 2015 DRAWN BY: ELIAS LEACH	
OTAGE 1,437 955 2,392 61 319	DATE: JULY 7, 2015 REVISIONS: REV: REV:	
PF 2,772 RPLAN SCALE: 1/4" = 1'-0"	SHEET 8 ØF	

SQUARE FOOT	AGE
FIRST FLOOR SECOND FLOOR	1,437 955
HEATED TOTAL	2,392
DOG SPACE FRONT PORCH	61 319
TOTAL UNDER ROOF	2, 77 2


NEW FIRST FLOOP


	THE FENSTERMACHER RESIDENCE 424 E. TREMONT AVE. CHARLOTTE, NC 28203
	PROJECT: © COPYRIGHT 2015 DRAWN BY: ELIAS LEACH
	DATE: JULY 29, 2015 REVISIONS: REV: REV:
NEW SECOND FLOOR PLAN SCALE: 1/4" = 1'-0"	SHEET 11 0F


2×4 RAFTER TIE @ 48" O.C.	-2×6 RAFTER -1/2" SHEATHING -FELT PAPER -ARCHITECTURAL SHINGLES COVE MOULD - IX FRIEZE BOARD - FURRING STRIPS BEAD BOARD SHEATHING * EXPOSED RAFTER AREA	
R-30 INSULATION VALUE 1/2" GYPSUM BOARD STUD WALE 7/16 OSB HOUSE WRAP TRADITIONAL WOOD LAP SIDING R-13 INSULATION TYPICAL CO	DRIP EDGE 1×4 FASCIA 24" ENICE DETAIL SCALE: 1'' = 1'-0"	A CHARLOTTE, NC 28203
		HENCE THE A A A A A A A A A A A A A A A A A A A
		PROJECT: © COPYRIGHT 2015
		DRAWN BY: ELIAS LEACH DATE: JULY 29, 2015 REVISIONS: REV: REV:
NEW	SCALE: 1/4" = 1'-0"	SHEET 12 OF

SCALE: 1/2" = 1'-0"

SCALE: 1/2" = 1'-0"

THE FENSTERMACHER RESIDENCE	424 E. TREMONT AVE. CHARLOTTE, NC 28203	
PROJECT: © COPYRIGHT 2015 DRAWN BY: ELIAS LEACH		
DATE: JULY 29, 2015 EVISIONS: EV: EV:		
<u>Sheet</u>		