HIGH OCCUPANCY VEHICLE (HOV)/ HIGH OCCUPANCY TOLL (HOT)/ MANAGED LANE WORKSHOP #1

August 21, 2007

PROGRAM AGENDA

- Introduction to Managed Lanes
- Technical Feasibility
 Institutional Feasibility
 Financial Feasibility
 Wrap Up and Next Steps

AGENDA

Welcome

Introduction to Managed Lanes

Technical Feasibility

Institutional Feasibility

Financial Feasibility

Wrap Up and Next Steps

NATIONAL EXPERIENCE WITH HOV, HOT & MANAGED LANES

- History of HOV, HOT and Managed Lanes
- Purpose and Benefits of Each
- Types of Lane Treatments
- Elements of a System
- Lessons Learned
- Concluding Thoughts

IT ALL STARTED WITH TRAFFIC CONGESTION...

Traffic congestion costs us time.

It costs us our peace of mind and quality of life. We don't travel when we want to.

- We don't go as far as we'd like.
- We don't use the most direct route.
- We limit where we choose to live and where we're willing to work.

...AND LIMITATIONS ON MEETING RISING DEMAND.

Lack of Space Environmental Constraints Inadequate Funding Explosive Growth

THE FIRST HOV LANES WERE DEMONSTRATIONS.

- Shirley Highway
- Blue Streak Express
 Bus Lanes
- El Monte Busway
- XBL Lane, NJ

BENEFITS OF HOV LANES - TRAVEL TIME SAVINGS - TRAVEL RELIABIL

MODE SHIFTS

Example HOV Growth On I-45N

HOV LANES BECAME POPULAR

1990s: HOT LANES WERE TESTED

 \Diamond

- Early demonstrations on SR 91 (Orange County, CA) and I-15 in San Diego
- One new facility, one converted facility
- HOVs free, SOVs pay
- Electronic toll collection made demonstrations possible

Tested congestion pricing

WHAT ARE HOT LANES?

- Managed priced lanes giving preference to HOVs.
- Highest HOVs are typically free.
- Offers unimpeded travel and reliability benefits during peak periods

I-394 Minneapolis SR 91, Orange County

HOT LANE BENEFITS

User Benefits

- Reliable travel time
- Reduced delay
- More choices

System Benefits

- Greater throughput
- Improve mainlane capacity
- Preserves future capacity
- Improved air quality
- Revenue generation

SR 91, Orange County, CA

WHY NOW?

Elected Officials see the Benefits

WHAT ARE MANAGED LANES?

- Dedicated lanes serving different users over time.
- Real-time strategies used to preserve roadway operating capacity.
- Unimpeded travel offered during periods of peak demand.

FORMS OF LANE MANAGEMENT

Eligibility/Occupancy Access Restrictions

Pricing

TYPES OF LANE TREATMENTS CONCURRENT-FLOW LANES

TYPES OF LANE TREATMENTS REVERSIBLE LANES

I-10, Katy Freeway, Houston

TYPES OF LANE TREATMENTS CONTRAFLOW LANES

IS POSTIME INC

PARK & RIDE FACILITIES

US 290, Houston

CLOSING THOUGHTS

- Three feasibilities critical for any managed lane strategy: Technical, Institutional, Financial
- Managed lanes fit a unique role and are only part of a congestion management program that includes all other approaches to addressing demand.

CHARLOTTE'S EXPERIENCE WITH HOV LANES

HIGH OCCUPANCY VEHICLE LANES

I-77 HOV LANES

State's First HOV Facility

- Opened December 2004, 3 years from development of conceptual design
- Added to design-build contract
- Restricted to vehicles with 2+ occupants

HIGH OCCUPANCY VEHICLE LANES

- Restricted to HOVs at all times
- Some access restrictions 1-77

I-77 HOV LANES

 Multi-agency team met during project.
 Extensive public outreach/education effort (logo, website, brochures, speakers bureau, traffic court flyers).
 Conducted 2 HOV enforcement workshops (SHP, CMPD, DA's office).

OCCUPANCY VEHICLE LANES

HOV DEMAND AFTER 7 WEEKS OF OPERATION

0 × ----

		General Purpose Per Lane		HOV Lane	
	Direction	Vehicles	Persons	Vehicles	Persons
	Southbound AM Peak Hour	1,472	1,583	266	664
1	Northbound PM Peak Hour	1,190	1,268	325	881

HOV DEMAND AFTER ONE YEAR OF OPERATION

0 . ----

		General Purpose Per Lane		HOV Lane	
	Direction	Vehicles	Persons	Vehicles	Persons
	Southbound AM Peak Hour	1,589	1,722	296	836
	Northbound PM Peak Hour	1,278	1,352	332	864

I-77 HOV - AFTER FIRST YEAR

Travel time savings around 5 minutes

- 1232 bus passengers using HOV lane daily, up 53% from fall 2004
- 77% of respondents in fall 2005 poll were familiar with HOV lanes, up from 45% in 2004
- 17% used HOV lanes regularly based on poll responses
- § 56% of poll respondents thought I-77 HOV lanes were good idea

DESIGN CHALLENGES

Southbound HOV Lane Terminus
Northbound HOV Lane Terminus
Beginning of Northbound HOV Lane
Ingress/Egress along HOV Facility

SOUTHBOUND HOV LANE TERMINUS

Extends south of I-277 Exit Ramp I-77 traffic volumes are lower, improving safety for merge

SOUTHBOUND HOV LANE TERMINUS

Design includes HOVonly bridge over I-85 This feature dictated 24/7 operation to prevent driver confusion. Allows HOVs to by-pass I-85 ramp traffic Southbound HOV Lane is 10 miles

NORTHBOUND HOV LANE TERMINUS

3 GP lanes + HOV lane drops to 2 GP at end of current widening
Merge creates 1-mile PM Peak queue
Design has lane drops from right
HOVs bypass queue because HOV lane becomes 1 of 2 GP lanes going north

NORTHBOUND HOV LANE TERMINUS

0 × ----

NOTE: Stationing is in meters; distances measured in feet

BEGINNING OF NORTHBOUND HOV LANE

- Begins ½-mile north of I-85 interchange
- Allows trucks from I-85 to merge safely into left I-77 GP Lane
 Northbound HOV Lane is 5 miles

HOV 2

ONLY

RESTRICTED

24 HOURS

VIOLATORS

INGRESS/EGRESS ALONG I-77 HOV LANES

- Maximum HOV Facility Access
 Safety Access
 - Restrictions
INGRESS/EGRESS ALONG I-77 HOV LANES

Double white solid lines for prohibited HOV lane

access ♦6-inch lines

INGRESS/EGRESS ALONG I-77 HOV LANES

Single white skip line for permitted HOV lane access

♦ 10-inch line

I-77 ENFORCEMENT

Fine is only \$10 because of interpretation of State statutes Violators still have to pay court costs of \$100 Violators also get 2 points on license NCSHP is primary enforcement agency |-77 OCCUPANCY VEHICLE LANES

ELEMENTS OF STUDY FEASIBILITY

Technical 🛑 Institutional 🔵 Financial

DETERMINING FEASIBILITY OF MANAGED LANES

- Technical: Determine measurable benefits of HOV/HOT/MLs
- Institutional: Evaluate & shape stakeholder/public attitudes
- Financial: Look at costs, revenues and other impacts

TECHNICAL FEASIBILITY

- Utilize tools developed by PB rules of thumb – lessons learned to minimize delay in reaching decisions
- Employ revenue optimization model to quickly screen toll options (HOT Lanes)
- Factor in local conditions and standards – capitalize on previous work in the region

INSTITUTIONAL FEASIBILITY

- Workshop, outreach, stakeholder interviews - measure perceptions of how locals would react to managed lanes being added to the freeway system
- Get pulse of the stakeholders early
- Identify and bring the right people to the table – and listen / identify what buzz is out there

FINANCIAL FEASIBILITY

Define financing goals and objectives

- ♦ <u>HOT Lanes</u>:
 - Congesting pricing vs. revenue maximization
 - Self supporting system vs. contributions to O&M and/or capital expenditures

HOV Lanes:

- Identifying funding/revenue sources
- Appropriately sizing the project to match availability of funding (Phasing)

BRAINSTORM DISCUSSION: WHAT ISSUES COULD AFFECT MANAGED LANES IN CHARLOTTE?

AGENDA

Welcome

- Introduction to Managed Lanes
- Technical Feasibility
- Institutional Feasibility
- Financial Feasibility
 Wrap Up and Next Steps

OVERVIEW OF TECHNICAL GUIDELINES & THRESHOLDS

- Lane Management Basics
 Oritical Thresholds
- Critical Thresholds
- Typical Criteria
- Conditions for Each Strategy to Work
- Typical Output from Screening

WHAT DOES LOS "C" LOOK LIKE?

CRITICAL THRESHOLDS

- Travel Time Savings
 - 0.5 minutes/mile or 5-7 minutes/trip
- Adequate Use
 - Initial (opening year)
 - Forecast (planning horizon)
- Ability to Add a Lane
 - May borrow off-peak direction lane or shoulder

ADEQUATE USE

Vehicles

- Perception based, varies by lane treatment
- Typically 400-600 vph initially
- Persons
 - Parity or better compared to GP lanes by planning horizon (5-20 years after opening)
 - 2000 persons per hour =
 - 500 2+ carpools, 15-18 loaded buses
 - 800 2+ carpools, no buses

TYPICAL SCREENING CRITERIA

- Presence of Congestion
- Demand-HOV vehicles
- Demand-Persons (HOV and transit)
- Demand-Toll paying commuters
- Demand-Commercial vehicles
- Travel Patterns
- Roadway Characteristics

FOR AN HOV LANE TO WORK

Vehicles

- Perception based, varies by type of treatment
- Typically 400-600 vph initially
- Persons
 - Parity or better compared to GP lanes by planning horizon (5-20 years after opening)
- Ability to add a lane
- Transit and rideshare potential
- Ability to enforce

FOR A HOT LANE TO WORK

Vehicles

- Typically 1000-1200 vph initially
- Maximum of 1600-1650 vph (LOS C)
- Ability to add a lane or convert an HOV lane
- Project champion and willing stakeholders
- Revenue Impact on Adequate Use
 - 2+: May not cover pricing O&M costs
 - 3+: Maximizes revenue at sacrifice to 85% of eligible HOVs

FOR A TRUCK TOLL LANE TO WORK

- Requires 2 directional lanes
- Vehicles: 800 trucks/hour
- Common origins and destinations
- Mandatory tolling for financial feasibility
- Willing stakeholders
- None built yet, studied in Atlanta, Los Angeles, Bay Area

FOR AN EXPRESS/TOLL LANE TO WORK

- Minimum of 1 and preferably 2 additional directional lanes
- Vehicles demand of 1500 per lane/hour
- Common origins and destinations
- Willing stakeholders
- Ability to largely cover all costs from revenue

TYPICAL SCREENING OUTPUT

Evaluation Matrix for Screening Las Vegas HOV Corridors													
Corridor	Segment	Presence of Congestion		Bottlenecks		Transit Service Potenfial	Travel Patterns	HOV Demand		Available Space	Connectivity needs	Segment Summary	Segment Rank
⊦ 15	s. of I-215	0	-			0				4	-	•	
⊢ 15	I-215 to US 95/I-515	0		9		4				0	w/ I-215 & US 95	-	•
⊢ 15	US 95/I-515 to 215	0	•	•						4	-	9	•
⊢ 15	N. of 215	0	0	0	0	0		0	0	-	-	0	0
H215	I-515 to I-155	-		•		0		-		۲	w/ I-15	•	-
215	I-15 to Summerlín		•	•		0		-		4	W/ 1-15	•	-
215	Summerlin to US 95	0	0	C		0				-	-	0	C
215	US 95 to I-15N	0	C	0	C	0		-		9	-	0	C
US 95	I-15 to Summerin*	0				9					w/ I-15	9	
US 95	Summeriin to 215"	C	0					-			-	•	
US 95	N. of 215	0	0	0	0	٩		٠	C	9	-	C	0
I-515	Boulder Hwy to I-15	0	•		9			-		٩	-	•	
1-515	I-215 to Boulder Hwy	C	0	C	0	٩		-			-	0	
l-515	S. of I-215	0	0	0	0	0		۲	C	-	-	C	0
Summerlin	US 95 to 215"	0	0	0	C				•		-	0	C

Notes: * = included in no-build

Ľ

Ò

NULL N

EXAMPLE OF HOV DEMAND THRESHOLD

OTHER EVALUATION CRITERIA

- Connectivity
- Safety-design attributes
- Public attitudes/support
- Sector Enforceability
- Cost/cost effectiveness
- Impacts on others
- Revenue generation potential

POTENTIAL SCREENING CRITERIA FOR CHARLOTTE REGION

Presence of Congestion
 HOV Demand
 HOT Demand
 Physical Attributes

PRESENCE OF CONGESTION

 Line-haul congestion on freeways:
 V/C > 1.0 & speeds < 30 mph in peak period

 Line-haul congestion on arterials:
 V/C > 1.0 & speeds < 20 mph in peak period

Bottlenecks (<0.5 mi.): V/C >1.0 & speeds < 20 mph in peak period</p>

HOV DEMAND

Adequate transit ridership where carpools < thresholds</p>

 Trip distances > 5 mi. for freeways & 3 mi. for arterials

 More persons per lane than GP lanes (using 2000 persons/GP lane)
 600 PCEs/hour (min.) for freeways; 200 PCEs/hour (min.) for arterials

HOT DEMAND

- Trip distances > 5 mi. on freeways & 3 mi. on arterials for commuters or large trucks
- 1000 PCEs/hour (min.) for freeways;
 400 PCEs/hour (min.) for arterials

Commercial vehicles

- 400 large trucks directionally/hour
- Common O&Ds > 5 mi. using corridor
- Forecasted gross revenues

PHYSICAL ATTRIBUTES

- Space for commuter demand > 16 ft. by direction
- Space for truck demand > 34 ft. by direction

 Assess feasibility of borrowing needed managed lane capacity based on above dimensions

DISCUSSION: WHAT TECHNICAL ISSUES SHOULD BE ÅDDRESSED ?

AGENDA

♦ Welcome

- Introduction to Managed Lanes
- Technical Feasibility
- Institutional Feasibility
- Financial Feasibility
 Wrap Up and Next Steps

INSTITUTIONAL FEASIBILITY

MARKET CHARACTERISTICS AND ELEMENTS FOR SUCCESS

Product

Placement

Pricing

Promotion

MARKET CHARACTERISTICS & ELEMENTS FOR SUCCESS

Product

- Is it a product that people want to buy?
 - Is there a <u>demand</u> for moving more swiftly (that matches <u>financing requirements</u>)?
 - Is it more reliable?
 - Is it safe?
- Is a product that has broad-based support *?
 - Project "champion" necessary regardless of managed lane strategy
 - Trusted agency sponsor (DOT, transit agency, city) and willing partners (FHWA, police, courts)
 - *unique to projects that use public \$\$ or other public resources

MARKET CHARACTERISTICS & ELEMENTS FOR SUCCESS

Product: Is it a product that people want to buy?

Placement

- Can you provide the facility in the correct location?
 - Can you provide a safe, reliable facility at strategic locations where there is congestion?
 - Can the facility be easily and safely accessed at those locations?
 - » Transit access
 - » Entrances/exits/merges

MARKET CHARACTERISTICS & ELEMENTS FOR SUCCESS

- Product: Is is a product that people want to buy?
- Placement: Can you provide it in the correct location?

- Pricing
 - Will consumers be willing to "pay" the product price ?
 - Can you price it so that people are willing to pay (in money or behavior) to make it beneficial to use?
 - » Carpooling/vanpooling easy to form and meet?
 - » Toll attractively priced and easily understandable?

MARKET CHARACTERISTICS & ELEMENTS FOR SUCCESS

- Product: Is is a product that people want to buy?
- Placement: Can you provide it in the correct location?
- Pricing: Will consumers be willing to "pay" the price?

Promotion

- Can you deliver the facility so that people know about and can easily purchase it?
 - Enforce Requirements
 - » Occupancy
 - » Toll
 - User "Amenities"
 - » Transit Service
 - » Park & Ride Lots
 - Toll Collection and "\$ for Service"
 - » Transponder Distribution and Servicing
 - » "Money-Back" Guarantee

WHAT HAVE WE LEARNED?

No Negative Impact to General Purpose Traffic

- Converting existing lane to a HOV/HOT/managed lane
- Shoulder use requires additional incident management commitment
- Merging into and out of the managed facility can create new congestion or crashes in the GP lane
- "Non-Compete Terms" for HOT/managed vs. GP Lanes
WHAT HAVE WE LEARNED?

Facility Perceived as Effective

- Ensure that project has adequate usage day of opening for public acceptance and users safety
 - Meets minimum thresholds for use
 - Low level of violations
 - No perception of negative impacts on adjacent users
 - Access to/exit from tolled lanes do not impede GP lanes

WHAT HAVE WE LEARNED?

Facility Perceived as Customer Friendly

- Easy to obtain and "reload" transponder
 - Easy to obtain in person, on phone or through internet
 - Rewards for account management via internet or frequency of use
- Policies and procedures for "money back" guarantee (HOT)
 - Users are "paying for level of service." What happens when the level of service isn't delivered?

WHAT HAVE WE LEARNED?

Facility "Honest & Acceptable" to General Public

- Operator(s) of facility have a positive standing in the community
 - Denver and Texas examples
- Enforcement preparation and implementation
 - Troopers are trained and assigned
 - Judges educated regarding their enforcement role
- Fines are appropriate and legislatively enabled
 - Fines
 - Court Costs
 - Insurance Points

WHAT HAVE WE LEARNED?

Current Project Challenges

- - People Moving vs. Vehicle Moving
 - Air Quality
 - Revenue Generation

WHAT HAVE WE LEARNED?

Current Project Challenges

Hybrid Usage

- Can clog HOV lane
- Hybrids use their gas engines (vs. energy efficient electric) when they are operating at 45+ mph 90% of the time, but are not "super energy efficient" when operating at freeway speeds -- conversely they offer more air quality benefits when operating in slowspeed traffic.

 "Speed is your enemy. The ideal routes have long stretches without stops, and speed limits of 30 - 35 mph. The maximum allelectric speed is 40 mph. The "sweet spot" for most hybrids, in "steady state" testing, is between 40 and 45 mph." http://www.hybridcars.com/gas-saving-tips.html

STAKEHOLDERS INTERVIEW FINDINGS TO DATE

STAKEHOLDERS INTERVIEWED

Stakeholders	Representing	Status
David Hoyle	NC Senate	
Sue Myrick	US Congress	
Lee Myers	Matthews	X
Buddy Motz	York County Commission	
Bill Thunberg	Mooresville	X
John Lassiter	Charlotte City Council	X
Lisa Renstrom	Sierra Club	X
Ronnie Bryant	Regional Partnership	X
Sgt. David Witherspoon	State Highway Patrol	X
Stacy Davis	Wachovia Bank	X
John Cox	Cabarrus Chamber of Commerce	X
Allen Tate/ Natalie English	Regional Roads Committee	
Alan Smith	Harris Teeter	X

DISCUSSION: WHAT INSTITUTIONAL ISSUES SHOULD BE ADDRESSED?

AGENDA

♦ Welcome

- Introduction to Managed Lanes
- Technical Feasibility
- Institutional Feasibility
- Financial Feasibility
 Wrap Up and Next Steps

Financing Pricing Examples

FINANCING

Federal Demons- tration Funds	 TEA-21 – USDOT's FHWA and State and or Local agencies Value Pricing projects Project - The HOT Lane program in Houston
State Funds	 E.g. State Infrastructure Bank – like private banks Projects - Pocahontas Parkway, VA and Butler Regional Highway in Ohio
Local Sales Tax Initiatives	E.g. sales tax, motor fuel taxes, motor vehicle registration taxes, commuter taxes, tax increment financing, and other forms of special assessment
Bonds/ Private Financing	 taxable toll-revenue bonds – private financing tax-exempt toll revenue bonds – public financing Project – SR-91, Orange County, CA
Innovative Financing Programs	 Section 129 Loans – allows Federal participation Transportation Infrastructure Finance and Innovation Act Project - President George Bush Turnpike, Dallas, first highway facility to be financed with Section 129 loans.

PRICING

10 × -----

Variable Tolls	Toll roads, bridges, existing toll- free facilities			
Cordon Charges	Charges within an area			
Area- wide Charges	Per-mile charge in an area			
Variable Priced Lanes	 Express Tolls High Occupancy Toll lanes 			

PRICING EXAMPLES

Currently over 130 managed lanes projects in US and Canada

SR-91 EXPRESS LANE, ORANGE COUNTY

- Privately financed
- Variable rate bank loans, long term loans, private equity, subordinated debt.
- FasTrak transponder
- HOV 3+ gets 50% discounts
- ♦ Toll \$1.10 \$7.75
- ♦ Time of day

A

CARPOOLS

I-15 HOT LANES, SAN DIEGO

Value Pricing Pilot Program grant
 \$1.99 million local matching funds
 \$230,000 FTA

- 1998 FasTrak Dynamic Tolling
- \$ \$ 0.50 \$4.00 (\$0.25 increment),
 - maximum \$8.00
- ♦ HOV 2+ free

I-10 & US-290 HOT LANES, TX

- ♦ 1998 QuickRide on existing I-10 HOV
- No SOVs, 3+ is free
- Limited 2+ pay \$3.00 toll during peak
- Revenue pays all operational costs

I-394 HOT LANES, MN

- MnPass converted HOV to HOT
- Oynamically priced

CYCLES FRE

1200

- Free to HOV and motorcycles
- No toll during off-peak
- Average \$1.16 toll per trip

I-15 EXPRESS LANE, UT

- Free to 2+, buses, motorcycles & clean fuel vehicles
- \$50 per month decal, renews monthly
- Longest HOT lanes in operation in the USA (38 miles)
- Fines are \$82 Salt Lake County and \$92 in
 Utah County

I-25 HOT LANES, DENVER

- EXpressToll transponders
- Time-of-day (TOD) toll levels
- Free to HOV, buses, motorcycles
- Purpose cover M&O expenses not revenue maximization
- Actual Revenue
 3x estimated

НОТ	Annual Gross Revenue	Mi.	HOT lanes	Operation	Toll Range	Who Pays
SR-91, CA	\$39.5M	10	4	All-day TOD toll	\$0.75 – \$9.50	SOV toll, HOV3+ 50% free off-peak
I-15, CA	\$2.0M	8	2	Reversible Peak periods Dynamic tolling	\$0.50 – \$4.00	SOV toll, HOV2+ free
I-10, TX	\$0.16M <i>QuickRide</i>	13	1	Reversible Peak periods Fixed toll	\$3.00	NO SOV HOV2 toll/free off-peak, HOV3+ free
US-290, TX	See above	15.5	1	See above	See above	See above
I-394, MN	\$1.3M	9.8	2	Reversible & Concurrent Peak periods Dynamic tolling	\$1.00 – \$4.00	SOV toll, HOV2+ free
I-15, UT	n/a	38	2	All-day Both directions Monthly decal	\$50 per month	SOV toll, HOV2+/clean- fuel free
l-25, CO	\$1.6M	7	2	Reversible Peak periods TOD toll	\$0.50 – \$3.25	SOV toll, HOV2+ free

AGENDA

♦ Welcome

- Introduction to Managed Lanes
- Technical Feasibility
- Institutional Feasibility
- Financial Feasibility
- Wrap Up and Next Steps